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We show that Kolmogorov’s ( 1941b) inertial-range law for the third-order structure 
function can be derived from a dynamical equation including pressure terms and 
mean flow gradient terms. A new inertial-range law, relating the two-point pressure- 
velocity correlation to the single-point pressure-strain tensor, is also derived. This 
law shows that the two-point pressure-velocity correlation, just like the third-order 
structure function, grows linearly with the separation distance in the inertial range. 
The physical meaning of both this law and Kolmogorov’s law is illustrated by a 
Fourier analysis. An inertial-range law is also derived for the third-order velocity- 
enstrophy structure function of two-dimensional turbulence. It is suggested that the 
second-order vorticity structure function of two-dimensional turbulence is constant 
and scales with E:’~ in the enstrophy inertial range, E~~ being the enstrophy dissipation. 
Owing to the constancy of this law, it does not imply a Fourier-space inertial-range 
law, and therefore it is not equivalent to the k-’ law for the enstrophy spectrum, 
suggested by Kraichnan (1967) and Batchelor (1969). 

1. Introduction 
Kolmogorov ( 1941 a,h) developed the universal equilibrium theory for the small 

scales in turbulence by first making the hypothesis of ‘local isotropy’. Local isotropy 
means that the statistical distribution of the velocity difference 6u = u’ - u, of two 
points, is invariant under rotations and reflections, if the distance r between the 
points is small, that is if r+L, where L is the turbulence integral length scale. In 
his definition of local isotropy Kolmogorov also included steadiness in time of this 
distribution. Local isotropy implies that the nth-order statistical moment, or structure 
function, 

is an isotropic tensor. 
In his first paper (19414 Kolmogorov introduced two similarity hypotheses for the 

locally isotropic turbulence field: first that the B(”)  of different orders are determined 
by the kinematic viscosity v ,  the average dissipation rate c and the distance r ;  secondly 
that if there is a range where r+zy = v3/4/.5*/4 and still r 4 L  - that is an inertial range 
- then the Bin) are determined only by E and r in this range. 

qk = ( 6 U L 6 U , .  . . 6 U k ) ,  (1.1) 

In his second paper (1941h) Kolmogorov derived the inertial-range law 

(1.2) (3) 4 B,,, ( r )  = - -cr  5 
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for the third-order longitudinal structure function. Here the ind& 1 corresponds to 
the velocity component in the same direction as the separation vector Y between the 
two points with velocities u and u'. This is the only inertial-range scaling law that has 
been derived from the Navier-Stokes equations, and must therefore be considered to 
be a corner-stone of the theory. The fundamental importance of this law has been 
pointed out by Frisch (1991) and by Hunt & Vassilicos (1991), among others. 

Kolmogorov (1941b) used the Kirman-Howarth (1938) equation for the two- 
point velocity correlation to derive (1.2). This equation presupposes global isotropy, 
or isotropy not only of the small scales of turbulence but also of the large scales. 
Therefore, it contains no pressure terms since these must be zero for globally isotropic 
turbulence. In the derivation of Landau & Lifshitz (1987) the pressure terms are set to 
zero with reference to isotropy. For the case when only local isotropy can be assumed, 
for example turbulence in a homogeneous shear flow, these terms cannot be u priori 
neglected. A more rigorous derivation of (1.2) should therefore start from an equation 
where they are retained and also include a demonstration of the assumptions that 
are needed to neglect them, if this is possible. An attempt along these lines has been 
made by Monin & Yaglom (1975). However, the pressure terms which appear in their 
derivation are by an erroneous argument set to zero with reference to local isotropy 
(see the Appendix), which makes it impossible to draw any well-founded conclusion 
about the behaviour of the two-point pressure correlation in the inertial range. 

Here we will show that the two-point pressure-velocity correlation that is identically 
zero for a globally isotropic turbulence field and therefore set to zero in the Khrman- 
Howarth equation, is generally not negligible for the locally isotropic turbulence field 
in the inertial range, compared to the third-order structure tensor function. Actually, 
these quantities will be of the same order in the inertial range. This fact does not 
necessarily imply that the local isotropy hypothesis, as formulated by Kolmogorov, 
has to be given up; on the contrary it is perfectly consistent with the local isotropy 
hypothesis and enables us to derive a non-trivial inertial-range law for the two-point 
pressurevelocity correlation. 

It would be desirable to convince ourselves of the general consistency of the local 
isotropy hypothesis, as we carry out the analysis. A natural way to do this is to 
introduce the Reynolds decomposition 

u =  lJ+ii, (1.3) 

where U is the mean velocity and ii is the fluctuating part of the velocity. According 
to the assumption of the small-scale independence of the large scales, the B@) must 
be dynamically independent of the mean shear for small separations. It is also clear 
that the structure functions b@), of the fluctuating part of the velocity, with the same 
assumption of the small-scale independence, can be equated to the B(") with a very 
high degree of accuracy. For the homogeneous case we have 

where aU;/dxj  is the mean flow gradient tensor. The local isotropy hypothesis 
presupposes that the variation of the mean flow within a small domain will not 
influence turbulence structures confined in the same domain. Thus, the condition for 
putting bcn) = ~ ( " 1 ,  
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must be fulfilled when local isotropy is the case. As we shall see, this condition is well 
satisfied if r is in the inertial range or smaller. 

The problem that 6u generally contains a non-random component has been rec- 
ognized by Monin & Yaglom (1975, p. 102). To overcome the problem they suggest 
a transformation whose effect is a replacement of 6u by 6rl. We follow this sugges- 
tion. To convince ourselves that the small scales are dynamically independent of the 
mean shear, we formulate the dynamical equation for rather than for and 
investigate the possible influence from the mean flow gradient terms. This approach 
has also a second advantage. The turbulent energy is produced in the large scales 
through interaction with the mean shear and is dissipated in the very smallest scales. 
The Reynolds decomposition makes this dynamical picture clear. By using an energy 
equation with explicit production terms including the mean flow gradient, the relation 
between production and dissipation is revealed. Henceforth, we omit the tilde from 
quantities describing the fluctuating part of the hydrodynamic field. 

2. Derivation of the inertial-range laws 
We will now derive (1.2) for an incompressible homogeneous shear flow, in which 

case the dynamical equation for the second-order two-point correlation tensor reads 
(Hinze 1975) 

0’ a 
- ( u u ’ )  = --((u’U;u;) - ( U , U \ U i ) )  
?t ‘ I  ar, 

where repeated indices are contracted. The corresponding single-point equation reads 

where the tensors of the right-hand side are defined respectively as the single-point 
limit of the mean flow gradient terms, the pressure terms and the viscous term of 
(2.1). For the viscous term the sign has also been reversed compared to (2.1). Y 
is the production tensor which is commonly denoted by ‘P’.  Here we adopt the 
convention of using greek letters for single-point correlations and latin letters for 
two-point correlations. Z l  is the pressure-strain tensor and e is the dissipation tensor. 
Half the trace of E is equal to the average dissipation rate f. 

By adding to (2.1) the corresponding equation where i and j are switched and by 
using (2.2),  we find without any approximations 
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where we have introduced the notation 

for the two-point pressure-velocity correlation. To go from (2.1) and (2.2) to (2.3) 
homogeneity and incompressibility have been used.? It can be of some interest to 
note that the pressure terms on the right-hand side of (2.3), unlike all the other 
two-point correlation terms, cannot be reduced to expressions of structure-function 
form, such as 

i a  
- - ( 6 p d U j )  . 
P ari 

(2.5) 

Like all other terms in (2.3) the pressure terms are by homogeneity invariant under 
a change of sign of Y, while (2.5) changes sign if the sign of Y is changed. No such 
term as (2.5) can therefore appear in equation (2.3). 

Kolmogorov (1941b) obtained (1.2) by rewriting the Kirman-Howarth equation, 
which is the isotropic form of (2.1), into a form similar to (2.3) and integrating 
it from zero separation to the inertial range. For the globally isotropic turbulence 
field the pressure terms and the mean flow gradient terms of (2.1) are zero. By 
comparing the first two terms of the left-hand side of (2.3) we can see that for the 
locally isotropic turbulence field the pressure terms cannot be ci priori neglected. The 
components of the pressure-strain tensor can generally not be assumed to be small 
compared to the components of the dissipation tensor. It is reasonable to assume 
that for many realistic flows I IZ 1 and E are of the same order of magnitude. In 
direct numerical simulations of a homogeneous shear flow (Rl = loo), Rogers, Moin 
& Reynolds (1986) found that the magnitude of the diagonal components of Z l  were 
of the same order as the corresponding components of e.  From measurements in a 
nearly homogeneous shear flow with Rj, w 150, Harris, Graham & Corrsin (1977) 
estimated IZ, and found components of the same order as c. It is also a reasonable 
assumption that In 1- E in the limit of infinite Reynolds number. Assuming perfect 
stationarity and isotropic dissipation and using equation (7), we obtain 

where the indices refer to a coordinate system in which dUl /ax2  is the only non-zero 
component of the mean flow gradient tensor. Rogers et nl. (1986) obtained results 
not very far from (2.6) in the middle of the simulations when the flow field had been 
developed for some time, while the Reynolds number still was not too low. The 
experimental results of Harris et al. (1977) differ from (2.6) by about 30%. 

In the single-point limit the two-point pressure terms on the right-hand side of 
(2.3) will be identical with the pressure-strain tensor of the left-hand side. So for 

t A demonstration of how the triple correlation terms are rewritten can be found in Frisch (1995). 
This book was published during the final revision of this paper and contains a derivation of (1.2), 
(F95). There are some similarities between our derivation and F95. The triple correlation terms 
are rewritten in the same way and the close connection between Kolmogorov’s law and a Fourier 
description of the nonlinear energy flow, is pointed out in both derivations. There are also several 
differences. F95 does not make a Reynolds decomposition of the flow field, as we do. The pressure 
terms are not treated by F95, since only the trace of (2.1) is studied. The single-point equation (2.2) 
is not used by F95 to rewrite (2.1) into structure function form. Only the triple correlation terms 
are rewritten. To derive (1.2), F95 assumes stationarity in the global energy equation which means 
that the time derivative in (2.2) can be omitted. We apply the assumption of stationarity to the 
equation (2.3). According to Kolmogorov’s definition of local isotropy the time derivative in (2.3) is 
equal to zero. 
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small separations they cannot be neglected. The mean flow gradient terms of (2.3) 
can on the other hand be assumed to be small for small separations. If the energy 
production is assumed to be approximately equal to the dissipation we can estimate 
the order of magnitude of the mean flow gradient as 

E 121 ,- -7. 
For small separations, in the inertial range and smaller, we have 

G 1 .  
1 B(* )  1 
(. * 4 

The mean flow gradient terms of (2.3) are therefore negligible compared to E ,  which 
is the leading order of (2.3) in the inertial range. However, the mean flow gradient 
terms could not have been neglected already in the equation (2.1) with the same 
result, since they contribute to the single-point equation (2.2) with the dynamically 
very important production tensor Y .  The single-point terms in (2.3) were obtained by 
making use of equation (2.2) in which the production tensor is an important term. 

We shall now integrate (2.3) over the volume of a sphere with radius r ,  where r is 
in the inertial range. By definition, the viscous term is small in the inertial range. By 
neglecting this term, as well as the time derivative and the mean flow gradient terms, 
we find by virtue of the divergence theorem 

where n = Y / r ,  and dO is the element of solid angle. Each of the neglected terms can, 
when integrated and divided by r2 ,  also be written as integrals of the same form as 
in (2.9). The neglected viscous term can be written as 

(2.10) 

By virtue of the incompressibility condition, the time derivative can be written as 

n,r,Bjf’ dO , 
a t  

and the mean flow gradient terms as 

(2.1 1) 

(2.12) 

The terms in (2.10)-(2.12) can thus be compared with the terms in (2.9) only with 
reference to inertial-range quantities. If the concept of an inertial range is to have 
any relevance the terms in (2.10)-(2.12) must be negligible. If we use the Kol- 
mogorov (1941~) similarity law i B(’) I - e2/3r2/3 together with an assumption of 
quasi-stationarity we indeed find them small. 

If I ZI I - 6, so that the two left-hand-side terms of (2.9) are of the same order of 
magnitude, then it is reasonable to assume that the two different types of terms on 
the right-hand side of (2.9) also are of the same order of magnitude, so that 

(2.13) 
(2.14) 
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in the inertial range. These are the strongest conclusions we can draw from (2.9) 
without introducing the local isotropy hypothesis. 

By taking the trace of (2.9), the pressure terms of both the left-hand side and the 
right-hand side disappear, since they are traceless due to the condition of incompress- 
ibility. Thus we find 

16nr 
3 

- -e = J nsB$ dQ . (2.15) 

If we now assume that the vector Bji) is isotropic, then the integrand of (2.15) is 
independent of angle and we immediately find that 

n,B$) = --er 4 3 (2.16) 

in the inertial range. If we further assume that the tensor B(3)  is isotropic, which of 
course is a much stronger assumption, then any component of B(3) can be uniquely 
related to (2.16), since B(3)  in this case has only one independent component. Each 
component of B(3) can by isotropy and index-symmetry be determined by the two 
components B!:) and B f / ,  where t indicates a direction perpendicular to Y. These two 
components are related through incompressibility by 

(Landau & Lifshitz 1987). Clearly we have 

(2.17) 

(2.18) 

(with contraction over the indices s and i, but not over 1 and t which correspond to 
specific directions). From (2.16)-(2.18) Kolmogorov’s law (1.2) follows, and also the 
relation 

BI,t (3) = - E f r  4 (2.19) 
In this derivation of (1.2) (or (2.19)) the dynamical equation (2.1) is not forced into 
its isotropic form from the start, which has the double advantage of making the 
derivation more rigorous and considerably simpler. Putting (2.1) into its isotropic 
form involves some rather tedious manipulations, using the conditions of isotropy 
and incompressibility (see Kirman & Howarth 1938 or Landau & Lifshitz 1987). 
Here we proceed in a few steps to (2.15) without introducing isotropy. This procedure 
emphasizes the convective nonlinearity of the Navier-Stokes equations, rather than 
any specific isotropic relations, as the main condition for deriving a scaling law for 
the third-order structure function. 

From (2.9) it can be seen that the local isotropy hypothesis also implies another 
inertial range law. The dissipation tensor e of the left-hand side of (2.9) is isotropic 
for the locally isotropic turbulence field, as well as B(3)  when r is in the inertial range. 
The pressure terms of both the left-hand side and the right-hand side of (2.9) are 
traceless and thus they contain no isotropic part. If local isotropy holds, the pressure 
terms must therefore balance each other. This yields 

(2.20) 

in the inertial range. 
From one point of view the relation (2.20) might seem trivial. In the single-point 

limit the pressure terms of the two sides of (2.3) become identical. Therefore, (2.20) 
must also hold for very small separations, of the order of the Kolmogorov scale 
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y, since (2.20) is basically equivalent to the first-order Taylor expansion around 
zero separation. (An explicit Taylor expansion for scales of order y and smaller is 
somewhat more general than (2.20), but from our derivation it is clear that the special 
form of (2.20), arising from our choice of a sphere as the integration volume, is not 
crucial here, since we could have integrated over any other simple closed volume.) 
If the inertial-range separations also were considered as ‘small’, then it could be 
asserted that (2.20) can be anticipated without any use of the dynamical equation, 
thus being rather trivial. But this is not true. The inertial-range separations are small 
only compared to the integral length scale L, while they are large compared to y.  
The two-point velocity correlations, such as for example B ( 2 )  and B(’), can only be 
estimated accurately by a low-order Taylor expansion out to separations of the order 
of y,  while the inertial range is far beyond the range where such an expansion is 
valid. Here we have found that P ,  unlike the velocity correlations, can be estimated 
accurately in the inertial range by the lowest-order expansion, if local isotropy holds. 
The inertial range grows wider with increasing Reynolds number, and consequently 
this is also true for the range where the expansion is supposed to hold. 

From another point of view the relation (2.20) might seem somewhat paradoxical. 
A two-point quantity P which is identically zero for the globally isotropic turbulence 
field, must grow linearly with the separation distance in the inertial range; it must 
also be of the same order of magnitude as B(’) ,  if the turbulence field is to be locally 
isotropic. The idea of local isotropy is that the small structures of turbulence look 
identically the same in all directions. Adhering to this idea we cannot interpret (2.20) 
as saying anything about turbulence structures in the inertial-range. This is true even 
though it is an inertial range law, in the meaning that it determines the behaviour 
of a two-point correlation for separation distances that lie in this range. That (2.20) 
is not in direct conflict with local isotropy, can be understood from the fact that it 
cannot be formulated as a law for the pressure-velocity structure function ( 6 ~ 6 ~ ) .  In 
the definition of local isotropy it is not unreasonable to include that ( 6 ~ 6 ~ )  must be 
isotropic for reL.  The isotropic form of such a structure function is zero (Monin & 
Yaglom 1975, p. 103). But (2.20) is by no means incompatible with such a condition. 

In the next section, where we develop our analysis in Fourier space, we shall give 
(2.20) an interpretation that is neither trivial nor paradoxical, but in full agreement 
with the idea behind local isotropy. 

3. Fourier analysis of the inertial-range laws 
First we define the Fourier transform of P as 

P(v)exp(-ik-v)d3r, 

with the inverse transform 

P(v )  = &k) exp (ik - 1 0 )  d’k .I 
The Fourier transforms of other two-point correlations are defined in the same way. 

The pressure-strain tensor n, being defined as the single-point limit of the two- 
point pressure-velocity correlation terms of the dynamical equation (2.1), can be 
written as 

(3.3) 17,j = -2 1 (kipj + kiFj) d3k. 
i 
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The pressure-strain tensor undoubtedly has the role of transferring parts of the energy 
content of some directional components to other components. Thus, it reflects the 
tendency of the turbulence to isotropize. If the process of isotropization mainly takes 
place in the large scales, then the integral (3.3) will be dominated by contributions 
from wave vectors k for which k =I k I < ko, where ko is a wavenumber at the lower end 
of the Fourier-space inertial range, which is defined as the region where q e l / k G L .  
This type of reasoning rests on the commonly accepted idea of a correspondence 
between the size of turbulence structures and wavenumber. The assumption of the 
dominance of large scales to the integral (3.3) is in full agreement with the local 
isotropy hypothesis. By operating on (2.3) with we find 

In order to express the right-hand side of 3.4) in terms of correlations that go to zero 

These expressions differ only by a constant which is of no relevance in (3.4). In 
Fourier space the solution to (3.4) can be written 

when r goes to infinity, we can change BSi (2) in (26) to -R,, - Ris, where Ri, = ( U i U : ) .  

- kskj -  au. 
Pi = -B(3! + 2 2 f  pis + Esi) , 

k2 ”I’ ax, k (3.5) 

where R can be identified as the energy spectrum tensor. Substituting the expression 
(3.5) into (3.3) we find that the part of the integral related to mean flow gradient is 
weighted on the energy-bearing small wavenumbers. For this part the contribution 
from wavenumbers greater than ko must be very small. For the other part, related 
to g(3), a sufficient (but not necessary) condition for the contribution to the total 
integral (3.3) from wavenumbers greater than ko to be zero, is that B IS isotropic 

-(3) ’ for these wavenumbers. If this is the case, then the vector k,kjBSji is zero, due to 
incompressibility, and consequently the first term of the right-hand side of (3.5) will 
also be zero. The assumption that the isotropization takes place in large scales and 
that the integral (3.3) therefore is dominated by wavenumbers less than ko, is clearly 
closely connected to the local isotropy hypothesis. 

We shall now establish the connection between the inertial-range law (2.9) and a 
Fourier description of the energy transfer from large to small scales. First, we take 
the Fourier transform of equation (2.3) and find, with the approximations that led to 
(2.9), that in the inertial range 

4 3 )  . 

i ( -  ksB?;) - k J p i  - k iFj )  = 0. (3.6) 

This relation is basically equivalent to the perhaps more familiar statement that ‘the 
energy transfer function is zero in the inertial range’. 

Now we express P and 6(3) as Fourier integrals, and substitute these expressions 
into (2.9). This yields 

- n i p j )  exp (ik * v )  d3k dS2. 
8nr 
3 

~ (n, - fij) = 

Integrating in the angular variable Q and dividing by 8n/3 we find 

(3.7) 

where j ,  is the first-order spherical Bessel function. When k is in the inertial range (of 
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Fourier space) then the integrand of (3.8) is approximately zero, due to relation (3.6). 
When k is larger than the inertial-range wavenumbers then kr*l  and j l  oscillates 
rapidly. The contribution from this region to the integral (3.8) must therefore be 
negligible. Hence, the integral (3.8) is dominated by the region where k < ko. If r lies 
well inside the inertial range (of real space) then kr4l  for these wavenumbers, and 
the Bessel function can be expanded, j , (kr)  = kr/3 + 0( (kr )3 ) .  Thus, we find to the 
lowest order 

This is basically the same law as (2.9), but formulated in Fourier space. While (2.9) 
is valid in the inertial range of real space, (3.9) falls totally outside the inertial range 
of Fourier space. Therefore (2.9) does not necessarily say anything about turbulence 
structures of sizes in the inertial range. The same can of course be said about the 
relation (2.20). By comparing (3.9) with (3.3) we see that the pressure terms of each 
side of (3.9) balance each other if (and only if) the integral of (3.3) is dominated by 
the region where k < ko. In this case (2.20) must hold, and thus we can interpret this 
law as a consequence of the hypothesis that the isotropization takes place in the large 
scales of turbulence. 

If the pressure terms of (3.9) balance each other we must also have 

(3.10) 

This relation states that the flow of energy from small wavenumbers into the inertial 
range of Fourier space is equal to the amount of dissipated energy, and that if 
the tensor E is isotropic, i.e. if an equal amount of energy is dissipated in each 
directional component, then the flow of energy into the inertial range must also be 
equally distributed over the components. From our derivation it is clear that (3.10) is 
basically the same law as Kolmogorov’s law (1.2), but formulated in Fourier space. 

4. Two-dimensional turbulence 
From a geometrical point of view our derivation of Kolmogorov’s law (1.2) could 

have been repeated for the two-dimensional case, resulting in a similar relation, 
differing from (1.2) only by a numerical factor. Instead of integrating over a sphere 
as in the three-dimensional case, we should have integrated over a circle in the two- 
dimensional case. A relation corresponding to (3.10) could also have been derived, 
but in the two-dimensional case a cylindrical first-order Bessel function would have 
appeared instead of the spherical Bessel function in (3.10). But (3.10) cannot hold if 
there is a backward cascade of energy from large to small wavenumbers, as is the 
case in two-dimensional turbulence (Kraichnan 1967). Therefore, no such relation 
as (1.2) can be true for this case. Some of the assumptions that led to (1.2) must 
therefore be incorrect for two-dimensional turbulence, and the obvious candidate is 
the assumption of stationarity of B(2) ,  that led to the neglect of (2.12). If there is a 
backward cascade of energy, this assumption cannot be expected to hold. 

In two-dimensional turbulence there is a forward cascade of enstrophy (half the 
square of the vorticity) (Kraichnan 1967). Searching for the two-dimensional counter- 
part of (1.2) we therefore study the vorticity equation, which in the two-dimensional 
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incompressible plane case can be written 

- + u s - = v V o ,  am a m  2 

at ax, 
where o is the (only non-zero) vorticity component, which points out from the plane. 
For the homogeneous case we can from (4.1) derive an equation for the two-point 
vorticity correlation function : 

a a a 2  
-(oo’) - - ( (usow’)  - (u :o ’o ) )  = 2v-(ow’), 
at dr, ar,ar, 

corresponding to equation (2.1) of 92. By using the condition of incompressibility and 
by rearranging the terms in (4.2), we can derive the relation 

a a a 2  
- 4€, - -(6o6o) = -((6us6060) - 2V-(6060), 

at a J ” S  arsars 

where 
f, = v (--) am a. 

axi axi 

(4.3) 

(4.4) 

is the enstrophy dissipation, and where we have assumed that there is no mean 
vorticity gradient. Assuming that there is a range of separations where the time- 
derivative and the viscous term of (4.3) can be neglected, we find by integrating over 
the area of a circle lying in this range: 

Isotropy implies that the integrand is independent of angle and 

n , ( 6 u S 6 ~ 6 o )  = -2e,r, (4.6) 

which is the two-dimensional counterpart of Kolmogorov’s law (1.2). From (4.6) 
it is also possible to derive an equation exactly corresponding to (3.10), with the 
corresponding interpretation that the flow of enstrophy into the inertial range of 
Fourier space is equal to e,. 

For two-dimensional turbulence the natural analogy to Kolmogorov’s (19414 sim- 
ilarity hypothesis for the velocity structure functions is a corresponding hypothesis 
for the even-order vorticity structure functions, with v and E ,  as scaling parameters. 
The odd-order vorticity structure functions must be zero for plane two-dimensional 
turbulence, owing to reflectional symmetry in the plane. In the inertial range, that 

hypothesis gives 

where C, is a constant. The similarity hypothesis for the second-order velocity 
structure function of three-dimensional turbulence can be translated to Fourier space, 
giving us the famous k-5/3  law for the energy spectrum. No such prediction of the 
enstrophy spectrum can be based on the hypothesis (4.7), since the Fourier transform 
of a constant is a delta-function (see for example Lighthill 1959): 

is where yw = v ’ / ~ / € ,  116 4r4Lu,  where L, is an enstrophy integral length scale, the 

(6o6o) = c,#3, (4.7) 

Therefore the hypothesis (4.7) is not equivalent to the Fourier-space inertial-range 
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law for the enstrophy spectrum, 

@ ( k )  = C f y - ’  , (4.9) 

suggested by Kraichnan (1967) and Batchelor (1969). 
The hypothesis (4.7) may easily be refined in the same way as Kolmogorov’s 

1941 hypothesis was refined by Obukhov (1962) and Kolmogorov (1962), while it is 
impossible to reformulate (4.9) in direct analogy with the Obukhov-Kolmogorov 1962 
theory. In the refined formulation of (4.7) E ,  must be replaced by the average 
of the enstrophy dissipation over a disk of radius r .  

The numerical evidence in favour of (4.9) does not seem to be entirely conclusive. 
In a high-resolution direct numerical simulation of freely decaying two-dimensional 
turbulence Brachet et a!. (1988) found energy spectra decreasing with exponents 
varying between -3 and -4, corresponding to exponents between -1 and -2 for the 
enstrophy spectrum. Whether (4.7) or (4.9) holds, or neither of them, must be decided 
by further experiments, or by some physical argument yet unknown. 

5. Concluding remarks 
Our analysis of the dynamical equation for the velocity two-point correlations of 

a homogeneous shear flow has shown that the concept of an inertial range where the 
third-order structure function generally scales according to (2.13), can be developed 
from an equation with all the dynamically relevant terms retained. Furthermore, it 
has been shown that the two-point pressure-velocity correlation scales according to 
(2.14) in this range, if the pressure-strain is of the same order as the dissipation. 
The introduction of the local isotropy hypothesis made it possible to formulate these 
relations as exact laws, as in (1.2) or (2.19), and (2.20). By a Fourier analysis it was 
shown that Kolmogorov’s law (1.2) is closely connected to the notion of an energy 
flow from large scales into the inertial range, and that the corresponding law (2.20) for 
the pressure-velocity correlation can be interpreted as a consequence of a hypothesis 
that isotropization takes place only in the large scales of turbulence. 

Our analysis has neither proved nor disproved the local isotropy hypothesis. The 
most we can say is that the hypothesis seems to be fully consistent with the Navier- 
Stokes equations. It is difficult to see that the dynamical equation (2.1) could be used 
more thoroughly than it has been used here, to decide on the matter of local isotropy. 
Therefore it is our belief that the decision has to be left to experiment. 

A direct experimental verification of the inertial-range law (2.20) for the pressure- 
velocity correlation, is practically impossible with the experimental techniques used 
today. Up till now it has been considered impossible to measure the pressure-strain by 
other means than measuring the other quantities in the equation (2.2) and estimating 
it as the remainder of the energy balance. Recent theoretical development (Lindborg 
1995) of the kinematical theory of homogeneous axisymmetric turbulence, has made 
it clear that it  is possible to measure the pressure-strain and in principle also the 
two-point pressure-velocity correlations, by measuring velocity correlations and then 
solving a Poisson equation. Substantial progress along these lines has also been made 
in experiments by Sjogren & Johansson (private communication) at KTH (Royal 
Institute of Technology, Sweden). However, the limitations set by the size of the wind 
tunnel and hot wires, make it impossible to reach the high Reynolds numbers for 
which (2.20) can be supposed to hold. This relation can only be indirectly verified 
by an experimental verification of the isotropic relations (1.2) and (2.19). If these 
hold, then the third-order structure tensor function is isotropic in the inertial range, 
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and the pressure terms in (2.9) must balance each other, as expressed by (2.20). As 
far as we know there are no reported experimental verifications of (2.19), while there 
are several verifications of (1.2). The results from measurements of the third-order 
longitudinal structure function by Van Atta & Chen (1970), at different heights in an 
atmospheric boundary layer over the ocean, are in quite good agreement with (1.2); 
the result of Van Atta & Park (1980) from a marine boundary layer is in very good 
agreement with (1.2), and the results of Antonia, Zhu & Hosokawa (1995) from an 
atmospheric boundary layer and a circular jet are in reasonable agreement with (1.2). 

Recently an impressive experimental investigation of the local isotropy hypothesis 
has been performed by Saddoughi & Veeravalli (1994) in a high Reynolds number 
(& = 500-1450) boundary layer. By using hot-wire x-probes they measured stream- 
wise energy, and dissipation spectra of different velocity components and found 
an increasing agreement (in these measures) with isotropic relations with increasing 
wavenumber in the inertial range, while the agreement appeared to be almost perfect 
in the dissipation range. Their conclusion is entirely in favour of the local isotropy 
hypothesis. There is, however, a question to be asked regarding their measurements. 
The total dissipation was first measured by integration of the measured dissipation 
spectra under the assumption of local isotropy. No spanwise or wall-normal spectra 
were measured. The error in this value due to statistical scatter can be estimated from 
their plots to be less than a few per cent. The dissipation was then calculated by 
using the relation (1.2), to which the measured structure function fitted rather well for 
more than one decade of separations. The value measured in this way was found to 
be more than 20% lower than the one measured in the first way. Unfortunately there 
is no discussion of the possible reason for this rather large deviation in their paper. 
One explanation could be that the dissipation in fact suffered from an anisotropy 
affecting the wall-normal spectra more significantly than the measured streamwise 
spectra, and that the value measured in the first way therefore was wrong. Another 
explanation could be that the third-order structure tensor function was not isotropic 
in the inertial range and that the value calculated by using (1.2) which presupposes 
isotropy therefore was wrong. It might be that the relation (2.20) was not fulfilled and 
that influences of pressure forces in the inertial range therefore affected the scaling 
constant of the longitudinal third-order structure function. It is a pity that the other 
(longitudinal-transverse-transverse) third-order structure function was not calculated 
from the measured data.? The relation (2.19) could have been used without any extra 
measurements, as a sensitive test of the accuracy of the measured dissipation and at 
the same time of the isotropy of the third-order structure tensor function. We also 
note that (2.16) can hold without (1.2) and (2.19) holding separately, since (2.16) can 
hold without (2.20) being the case. 

If B(3) is isotropic, so that (1.2) and (2.19) are valid, then the flow of energy 
from the large scales into the inertial range will be equally distributed over different 
components, as our Fourier analysis of $3 shows. In this case the energy content will 
almost certainly also be equally distributed over different components in the inertial 
range and for smaller scales, since it is difficult to believe that there could be any 
mechanism driving the small scales of turbulence towards a non-isotropic state, once 
they have been created isotropically. We therefore suggest that the most sensitive 
and most appropriate test of the local isotropy hypothesis is to test (1.2) and (2.19). 

t During the revision of this note the author has been communicating with Dr Saddoughi. 
Fortunately, the measured data have been saved. The two components of the form Bltt are now 
under evaluation. The result will be reported in cooperation with the author of this note. 



kolmogoroc '.s third-order structure-junction law 355 

If these relations could be repeatedly confirmed, then the question would almost 
certainly be answered. 

The author wishes to thank Arne Johansson for valuable criticism, support and 
encouragement, and Magnus Hallback for a fruitful discussion. He also wishes 
to express gratitude to one of the referees who contributed with extensive and 
constructive criticism, resulting in several improvements. Financial support from the 
Swedish Resarch Council for Engineering Sciences is gratefully acknowledged. 

Appendix. The derivation of Monin & Yaglom 
An equation which is similar to equation (2.3) of $2 has been derived by Monin 

& Yaglom (1975 pp. 401-403). However, in this derivation it is argued that if 
one includes isotropy of scalar-velocity structure functions in the definition of local 
isotropy, then the pressure terms that appear in the derivation must by local isotropy 
be equal to zero. In this Appendix we show that this conclusion is not valid. 

The derivation of Monin BZ Yaglom starts from the equation 

where o = 6u is the difference between the velocities u and uo at the points x and 
XO, with the separation vector r = x - xg. This equation is then multiplied by u ] ;  
the corresponding equation where i is changed to j is multiplied by uL, and the two 
resulting equations are averaged and added to each other. Their final equation is 
the same as equation (2.3), except that the pressure terms are missing, and since no 
Reynolds decomposition of the velocity field is made, the mean flow gradient terms 
are also missing. 

When (A 1) is multiplied by u, the first pressure term can be written 

- i ((U] - uo,)*) dx, 
P 

Assuming homogeneity, (A 2) can also be written as 

Monin & Yaglom conclude that this term and all other terms containing pressure 
by local isotropy will vanish, since the isotropic form of scalar-velocity structure 
functions is zero (Monin & Yaglom 1975, p. 103). The only relevant scalar-velocity 
structure function in this context is of course the pressure-velocity structure function 
(6p6u) .  Thus, the argument is if ( 6 ~ 6 ~ )  is zero, then (A 3) must also be equal to zero. 

It is evident that this inference can be valid only if (A3) can be reduced to 
first-order derivatives of pressure-velocity structure functions, such as 

i a  
- - (6P6Uj) 
P dri 

It is also evident that such a reduction is impossible. This can for example be seen 
by letting r go to infinity. In this limit, (A3)  reduces to its first term, a single-point 
quantity which generally is not zero, while (A4) is zero in the limit when r goes to 
infinity. Taking the limit r ---f cc does not imply any lack of generality in this case, 
since it is only a practical way to see that (A3) cannot be reduced to an expression 
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of the form (A4). The argument of Monin & Yaglom clearly requires that such a 
reduction is possible. 

There is also another simple way to see that the argument of Monin & Yaglom is 
not valid. If the argument were valid, then the pressure terms in the final equation 
would include ( 6 ~ 6 ~ ) .  Otherwise, it would be impossible to make the inference: 
(6p6u)  = 0 = pressure terms equal to zero. For dimensional reasons (A4) is the only 
possible form including ( 6 ~ 6 ~ ) .  But no such term as (A4) can appear in the final 
equation, which is clear from the fact that (A4) is odd in r ,  while the final equation 
is even in r ,  as we pointed out in 92. 
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